【新智元导读】刚刚,OpenAI发布首个AI视频模型Sora,60秒的一镜到底,神级效果生成。网友纷纷惊呼AI视频要变天。

卷疯了卷疯了,短短十几小时内,OpenAI和谷歌接连发布核弹级成果。

国内还没睡的人们,经历了过山车般的疯狂一晚。

就在刚刚,OpenAI突然发布首款文生视频模型——Sora。简单来说就是,AI视频要变天了!

它不仅能够根据文字指令创造出既逼真又充满想象力的场景,而且生成长达1分钟的超长视频,还是一镜到底那种。

Runway Gen 2、Pika等AI视频工具,都还在突破几秒内的连贯性,而OpenAI,已经达到了史诗级的纪录。

60秒的一镜到底,视频中的女主角、背景人物,都达到了惊人的一致性,各种镜头随意切换,人物都是保持了神一般的稳定性。

OpenAI究竟是怎么做到的?根据官网介绍,「通过一次性为模型提供多帧的预测,我们解决了一个具有挑战性的问题。」

显然,这个王炸级技术有着革命般的意义,连Sam Altman都沉迷到不能自拔!

他不仅疯狂发推安利,而且还亲自下场为网友生成视频:你们随意来prompt,我一一输出。

一位戴着尖顶帽,身披绣有白色星星的蓝色长袍的巫师正在施法,他的一只手射出闪电,另一只手中拿着一本旧书。

在一间拥有电影级灯光设置的充满托斯卡纳乡村风情的厨房里,一位擅长利用社交媒体的奶奶,正在教你制作美味的自制诺奇面。

我们将带你进行一次未来城市的街头巡览,在这里,高科技与自然和谐共处,展现出一种独特的赛博朋克风格。

这座城市洁净无瑕,到处可见的是先进的未来式有轨电车、绚丽的喷泉、巨型的全息投影以及四处巡逻的机器人。

想象一下,一个来自未来的人类导游正带领一群好奇的外星访客,向他们展示人类极致创造力的结晶——这座无与伦比、充满魅力的未来城市。

多项技术破纪录

借助于对语言的深刻理解,Sora能够准确地理解用户指令中所表达的需求,把握这些元素在现实世界中的表现形式。

也因此,Sora创造出的角色,能够表达丰富的情感!

它所制作出的复杂场景,不仅可以包括多个角色,还有特定的动作类型,以及对对象和背景的精确细节描绘。

看,下图中人物的瞳孔、睫毛、皮肤纹理,都逼真到看不出一丝破绽,完全没有AI味儿。

从此,视频和现实究竟还有什么差别?!

Prompt: Extreme close up of a 24 year old woman’s eye blinking, standing in Marrakech during magic hour, cinematic film shot in 70mm, depth of field, vivid colors, cinematic

此外,Sora还能在同一视频中设计出多个镜头,同时保持角色和视觉风格的一致性。

要知道,以前的AI视频,都单镜头生成的。

而这次OpenAI能在多角度的镜头切换中,就能实现对象的一致性,这不得不说是个奇迹!

这种级别的多镜头一致性,是Gen 2和Pika都完全无法企及的……

Prompt: A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors.

举个例子:「雪后的东京熙熙攘攘。镜头穿过繁忙的街道,跟随着几位享受着美丽雪景和在附近摊位购物的人们。美丽的樱花瓣伴随着雪花在风中飘舞。」

Sora根据这个提示所呈现的,便是东京在冬日里梦幻的一幕。

无人机的镜头跟随一对悠闲散步的情侣穿梭在街道上,左侧是车辆在河岸路上行驶的声音,右侧是顾客在一排小店之间穿梭的景象。

Prompt: Beautiful, snowy Tokyo city is bustling. The camera moves through the bustling city street, following several people enjoying the beautiful snowy weather and shopping at nearby stalls. Gorgeous sakura petals are flying through the wind along with snowflakes.

可以说,Sora的效果已经领先到了恐怖的级别,完全跳出了用冷兵器短兵相接的时代,其他AI视频被彻底干趴。

世界模型成真了??

最最最可怕的一点来了,Sora身上,竟已经有了世界模型的雏形?

通过观察大量数据,它竟然学会了许多关于世界的物理规律。

下面这个片段太令人印象深刻了:prompt中描绘了「一个短毛绒怪物跪在一支红蜡烛旁的动画场景」,同时描述了怪物的动作和视频的氛围。

随后,Sora就创造了一个类似皮克斯作品的生物,它似乎融合了Furby、Gremlin和《怪兽公司》中Sully的DNA。

让人震惊的是,Sora对于毛发纹理物理特性的理解,准确得令人惊掉下巴!

想当初,在《怪兽公司》上映时,皮克斯为了创造出怪物在移动时超级复杂的毛发纹理,可是费了好大一番功夫,技术团队直接连肝几个月。

而这一点,Sora轻而易举地就实现了,而且从没有人教过它!

「它学会了关于 3D 几何形状和一致性的知识,」项目的研究科学家Tim Brooks表示。

「这并非我们预先设定的——它完全是通过观察大量数据自然而然地学会的。」

Prompt: Animated scene features a close-up of a short fluffy monster kneeling beside a melting red candle. The art style is 3D and realistic, with a focus on lighting and texture. The mood of the painting is one of wonder and curiosity, as the monster gazes at the flame with wide eyes and open mouth. Its pose and expression convey a sense of innocence and playfulness, as if it is exploring the world around it for the first time. The use of warm colors and dramatic lighting further enhances the cozy atmosphere of the image.

得益于DALL·E 3所使用的扩散模型,以及GPT-4的Transformer引擎,Sora不仅能够生成满足特定要求的视频,而且能够展示出对电影拍摄语法的自发理解。

这种能力体现在它对讲故事的独特才能上。

例如,在一个以「色彩缤纷的鱼类和海洋生物充斥的,由纸艺精心构建的珊瑚礁世界」为主题的视频中,项目研究员Bill Peebles指出,Sora通过其摄影角度和拍摄时机,成功地推进了故事的发展。

「视频中实际上发生了多次镜头转换——这些镜头并非后期拼接而成,而是模型一气呵成地生成的,」他解释道。「我们并没有特别指令它这么做,它却能自动完成。」

Prompt: A gorgeously rendered papercraft world of a coral reef, rife with colorful fish and sea creatures.

不过,当前的模型并不完美。它在模拟复杂场景的物理效果上可能会遇到难题,有时也难以准确理解特定情境下的因果关系。比如,某人吃掉饼干的一部分后,饼干可能看起来仍然完整无损。

此外,模型在处理空间细节,如区分左右时可能会出错,也可能在描述随时间变化的事件,如特定的摄影机动作轨迹时,表现不够精确。

好在,它还并不完美。

否则,虚拟和现实的界限,还能区分得清吗?

这不是现实?但是无可否认的是,可怕的事实已经就在面前:一个已经能够理解和模拟现实世界的模型,也就意味着AGI已经不远了。

「唯一真正的视频生成工作」

业内大佬张启煊评价道,「Sora是我目前看到唯一跳脱出空镜头生成、真正的视频生成工作。」在他看来,目前看来Sora跟Pika、Runway是有代差的,视频生成领域终于被OpenAI支配。或许某天3D视频领域,有朝一日也能体会到这种恐惧。

网友们都被震惊到失语:「下一个十年会是疯狂的十年。」

「都结束了,我的饭碗要丢了。」

「整个素材行业都会随着这篇成果的发布而消亡……」

OpenAI就是没法停下干死初创公司的脚步,是吗?

「好莱坞即将发生核爆」。

AI电影制作人和他们目前的项目。

技术介绍

Sora是一种扩散模型,它能够通过从一开始看似静态噪声的视频出发,经过多步骤的噪声去除过程,逐渐生成视频。

Sora不仅能够一次性生成完整的视频,还能延长已生成的视频。

通过让模型能够预见多帧内容,团队成功克服了确保视频中的主体即便暂时消失也能保持一致性的难题。

与GPT模型类似,Sora采用了Transformer架构,从而实现了卓越的性能扩展。

OpenAI把视频和图像分解为较小的数据单元——「patches」,每个「patches」相当于GPT中的一个「token」。

这种统一的数据表示方法能够在更广泛的视觉数据上训练扩散Transformer,覆盖了不同的持续时间、分辨率和纵横比。

Sora基于DALL·E和GPT模型的研究成果,采用了DALL·E 3的重标注技术,通过为视觉训练数据生成详细描述的标题,使模型更加准确地遵循用户的文本指令生成视频。

除了能根据文本指令生成视频外,这款模型还能将现有的静态图像转化成视频,精确细致地赋予图像中内容以生动的动画。模型还能扩展现有视频或补全缺失的帧。

Sora为理解和模拟现实世界的模型奠定了基础,对此OpenAI认为这是实现通用人工智能(AGI)的重要步骤。

作品欣赏

一列火车穿越东京郊区时,窗户上反射出的迷人景象。

Prompt: Reflections in the window of a train traveling through the Tokyo suburbs.

在雪地草原上,几只巨大的羊毛猛犸象缓缓前行,它们长长的毛皮在微风中轻轻飘扬。远处是雪覆盖的树木和雄伟的雪山,午后的阳光穿透薄云,给这个场景增添了一抹温暖的光彩。低角度的拍摄令这些庞大的毛茸茸动物显得尤为壮观,景深效果引人入胜。

Prompt: Several giant wooly mammoths approach treading through a snowy meadow, their long wooly fur lightly blows in the wind as they walk, snow covered trees and dramatic snow capped mountains in the distance, mid afternoon light with wispy clouds and a sun high in the distance creates a warm glow, the low camera view is stunning capturing the large furry mammal with beautiful photography, depth of field.

无人机从空中俯瞰大苏尔加雷角海滩附近的崎岖悬崖,海浪冲击着岩石,形成白色的浪尖,落日的金色光辉照亮了岩石海岸。远处有一个小岛上立着灯塔,悬崖边缘覆盖着绿色植被。从道路到海滩的陡峭下降和悬崖边缘凸出的景象,展现了海岸的原始美丽和太平洋海岸公路的崎岖风景。

Prompt: Drone view of waves crashing against the rugged cliffs along Big Sur’s garay point beach. The crashing blue waters create white-tipped waves, while the golden light of the setting sun illuminates the rocky shore. A small island with a lighthouse sits in the distance, and green shrubbery covers the cliff’s edge. The steep drop from the road down to the beach is a dramatic feat, with the cliff’s edges jutting out over the sea. This is a view that captures the raw beauty of the coast and the rugged landscape of the Pacific Coast Highway.

蓝色时刻下的圣托里尼岛航拍视图,展现了白色基克拉迪建筑和蓝色圆顶的绝美建筑。火山口的景色令人叹为观止,灯光营造出一种美丽而宁静的氛围。

Prompt: Aerial view of Santorini during the blue hour, showcasing the stunning architecture of white Cycladic buildings with blue domes. The caldera views are breathtaking, and the lighting creates a beautiful, serene atmosphere.

一位20多岁的年轻人坐在天空中的一朵云上,沉浸在书本中。

Prompt: A young man at his 20s is sitting on a piece of cloud in the sky, reading a book.

一群活泼的金毛寻回犬小狗在银白色的雪地上嬉戏,它们好奇的小脑袋时而从雪地中探出,被雪花点缀,萌态十足。

Prompt: A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.

在意大利布拉诺一排排鲜艳的彩色建筑中,一只可爱的斑点狗正通过窗户好奇地望向外面。与此同时,街道上人来人往,有的步行,有的骑行。

Prompt: The camera directly faces colorful buildings in burano italy. An adorable dalmation looks through a window on a building on the ground floor. Many people are walking and cycling along the canal streets in front of the buildings.

一幅充满工人、设备和重型机械的建筑工地的移轴摄影。

Prompt: Tiltshift of a construction site filled with workers, equipment, and heavy machinery.

在一个培养皿中,生长着一片竹林,其中小熊猫们在欢快地奔跑。

Prompt: A petri dish with a bamboo forest growing within it that has tiny red pandas running around.

一只卡通袋鼠正在迪斯科舞池中跳舞。

Prompt: A cartoon kangaroo disco dances.

在一杯咖啡中,两艘海盗船展开了激烈的战斗,超写实的近景视频。

Prompt: Photorealistic closeup video of two pirate ships battling each other as they sail inside a cup of coffee.

大佬猜测:游戏引擎加持?

Pytorch联合创始人Soumith Chintala猜测道,「根据Sam Altman发布的所有用户请求视频,Sora似乎是由游戏引擎提供支持,并为游戏引擎生成作品和参数」。

英伟达高级科学家Jim Fan对全新Sora模型,发表了一些自己的观点:

Sora是一个数据驱动的物理引擎。它是对许多世界的模拟,无论是真实的,还是虚构的。该模拟器通过去噪和梯度学习方式,学习了复杂的渲染、「直观的」物理、长期推理和语义理解。

如果Sora使用虚幻引擎5接受过大量合成数据的训练,我不会感到惊讶的。必须如此!

同样,爱丁堡大学的博士生Yao Fu表示,「生成式模型学习生成数据的算法,而不是记住数据本身。就像语言模型编码生成语言的算法(在你的大脑中)一样,视频模型编码生成视频流的物理引擎。语言模型可以视为近似人脑,而视频模型近似物理世界」。

重塑视频行业

虽然,文本转视频技术要威胁到传统电影制作,可能还需要很长时间——

你无法通过简单地将120个Sora生成的一分钟视频拼接起来制作出连贯的电影,因为这些模型无法确保内容的连续性。

但是,这并不妨碍Sora和类似的程序彻底改变TikTok等社交平台。

「制作一部专业电影需要大量的昂贵设备。」Peebles 说,「这个模型将让普通人在社交媒体上制作出高质量的视频内容成为可能。」

参考资料:

https://openai.com/sora

“ 如何用AI重做B端产品?这是笔者近期的一点思考与实践,期望对你有启发”

2023年ChatGPT的横空出世,让所有人为之一振,有人兴奋(新/大机会到来),有人恐惧(被替代/被抛弃)。

2023年大模型赛道成为了最火热的赛道,一年之内推出N个大模型,它成为了继移动互联网和云服务之后,又一个万众创业的赛道。

作为一名产品人,且不说趋之若鹜,也得小试牛刀。

大模型离你我太远,AI平台玩不懂,那就聚焦自身工作进行思考(正所谓:贴地飞行,聚焦附近),适才有了这篇文章。

本文主要回答一个问题:如何运用AI重做B端产品?

回答此问题之前,我先抛出几个相关观点:

第一,大模型是属于大厂的机会,中小企业的最佳姿态,应聚焦所在行业的AI应用。

除了技术、资源、资金等原因外,还有一个关键原因是通用AI目前的局限性。即它无人类常识,无法真正理解;无人类本能的抽象与类比能力。

如果聚焦某个行业或场景,则可弥补这些能力,这在历史上已被反复验证成功过。

  • 比如1996年IBM的Deep Blue(深蓝)聚焦国际象棋,成功战胜了国际象棋的世界冠军;
  • 2011年IBM的沃森,聚焦智力问答,参加美国娱乐节目-《危险边缘》,成功战胜了两位当时的人类冠军,获得百万奖金;
  • 2016年谷歌的AlphaGo,聚焦围棋,与当时世界冠军李世石一战,最终4:1大比分获胜。

第二,AI是只是工具,是解决方案,而不是需求本身。所以AI的运用一定是基于需求出发,而不能为了AI而AI。

  • 比如专注于智能绘图的Midjourney,它可以做你的设计师,但需求起点是你所面临的问题;
  • 比如专注于智能图表的ChatExcel,它可以帮你处理、分析你的Excel表,但你需明确你所面临的问题;
  • 比如专注于智能PPT的ChatPPT,它可以帮你生成、调整PPT,但需求本身也是你所面临的问题;
  • 比如专注于智能视频的Pixverse,它可以帮你编辑、处理视频,但需求起点依然是你;
  • 等等

第三,所有现有产品,都值得用AI重做一遍。相对AI+(即用AI做一个新产品),可能+AI(即基于现有产品,重新用AI能力赋能)是更有效运用AI的路径。

01

需求是1,方案是0

你现在所面临的问题是什么?它是你运用AI的起点。

笔者是负责一款HR SaaS产品,面临最大的四个问题是:

  • 问题一:客诉问题多,严重影响产研效率。平均每天少则5-10个客诉问题,遇到月初高峰期的几天,每天15-25个客诉问题。
    • 每年大概产生1761个客诉问题,需要1.2个人(且此人必须是对系统逻辑、业务非常熟悉的T6及以上的高级技术人才)全职投入,才能解决完客诉问题。
    • 数据统计自2022.9.8日至2024.01.05日(共484天,约1.32年),累计产生2336条客诉问题,产研共计花费了2399小时(以8小时/日计算,约等于300人日)解决。
    • 上述客诉问题,仅统计透传至产研侧需解决的问题,不包含已被客服、客户成功初筛所解决的问题量;
  • 问题二:产品功能多,系统逻辑规则复杂。 同一个系统,至今已迭代8年之久,即使只计算某个模块(即考勤业务)的功能点,至少也是200+,对应的核心功能的产品规则复杂度,已经远超一般人所能理解。
    • 以笔者入职3个月时,所参与的其中一个加班相关项目为例(它只是一个大版本5个项目中的其中一个,它是需求与项目最小闭环化拆解的结果),涉及数十个场景(2种加班来源+3种班次类型+3个加班位置+2种加班模式+3种加班日期类型+4种加班时长规则+2种打卡方式),需求文档共写了55581字。
  • 问题三:需求数量大,且呈现长尾效应,产研资源难以匹配。过去1年大概解决了860+个需求,现在待解决需求还有4000+,其中同类需求的最大重复率也就是20(即同一个需求有20家客户提),其占比不超总需求的5%,剩余95%的需求,全是有1~2家客户所提。
  • 问题四:产品功能同质化严重,无法与竞对形成差异。笔者所从事的赛道,对应有不少竞对,大家在客群选择、产品理念、定价、营销上有所差异,产品能力上却趋同,难以形成差异化竞争。

这四个问题是SaaS产品比较常见的问题,哪些是可以用AI赋能解决的?

基于目前对AI的认知,对自身所负责产品的认知,结合相关领路人(如周鸿祎、傅盛、快刀青衣、白鸦等)的分享与启发,笔者推断:除了问题三之外,其他三个问题,均可通过AI得到有效解决。

问题三可通过商业模式设计、战略选择以及产品设计进行解决,此文按下不表,后续单独分享。本文主要关注AI可赋能解决的三个问题

02

所有产品都值得用AI重做一遍

为什么这么说?关键在于它让产品的交互方式,发生了革命性的变化。

PC互联网时代的产品,都是基于网页+鼠标点击的交互方式设计。比如用户要购物,需要找到对应网站的对应下单功能,并用鼠标完成确认;

移动互联网时代的产品,都是基于手机+APP+手指触摸的交互方式设计。比如用户购物则需下载对应App,并用手指触摸确认购物指令;

AI时代的产品,则是基于多模态的自然语言的交互方式设计。它就像2D到3D一样,不再只是依赖单纯鼠标或手指的输入,而是可以采取不同的形态(如语音、视频、图片、文字、动作,甚至是眼球变化、模拟神经元信息等),完成人与系统的交互。

所以我们可以考虑用这种新的交互方式,重做一遍之前用鼠标或手指触摸交互所做的所有产品。

案例1:用AI重做智能客服系统

智能客服功能是SaaS产品的标配,主要是提供自助式服务,帮助客户解决对产品规则与逻辑的疑问,以及遇到问题自助解决一部分(即解决问题一跟问题二)。

实际过程中,却遇到两个阻碍:

  • 阻碍1:以前的智能客服属于决策式AI产品,只能实现根据【关键字】匹配,而一般内部录入问题的人的语言体系,与客户语言体系差异较大,导致匹配度比较低,客户体验不佳。
  • 阻碍2:客户遇到问题,觉得自助服务不可信,直接联系人工客服,都是免费服务,后者显然更高效。

GPT4发布后,其对问题与内容的学习能力与“理解”能力,发生了质的变化,所以就可以用AI重新做一遍【智能客服】功能。

关键是两个方面的工作:充足的“养料”、重新定义智能客服产品。

第一,人工梳理足够的“养料”,最好拆分为足够颗粒度的问答模式,提供给AI进行学习。它就相当于是聚焦自身系统,让AI具备足够的“常识”与“理解能力”。

笔者累积的“养料”主要来源于四个方面:

  • 聊天记录:原智能客服的聊天记录中,清洗出比较有代表性的对话片段,转换成问答模式录入到知识库;
  • 客服知识库:客服团队日常与客户沟通过程中,形成的知识库(大概4万多个问题);
  • 产品文档:将现有产品文档的颗粒度进行拆解为AI更容易理解的问题(此处主要是因企业当前的AI能力所限,市面上成熟产品已可实现各种文档的学习),
  • 客诉问题:产研团队当前的客诉问题,将其中属于【客户操作问题】与【客户信息查询】两类(占比69.8%),将其总结、抽象、分拆为一个一个独立的问题,每1-2周录入一次,持续喂养,预计至少可总结出1万+问题;

特别说明:这是一个长期持续的过程,只有“养料”足够,以及AI能力的迭代,才能让智能客服达到接近于人的能力。

笔者第一阶段的目标,是期望通过3-6个月的累积,至少解决现有【客户操作类问题】与【客户查询类问题】的50%(即可减少整体产研客诉问题的35%)。

另一方面是通过重新定义智能客服产品,分阶段达成目标。

第一阶段:智能AI能力,转向优先服务内部角色,释放产研能力。直到“养料”与AI能力达到一定阶段后,再进入第二阶段。

具体操作是:

  • 产品用户:由直接面向客户改由面向客服、客户成功、实施、销售角色,辅助他们完成对客户的服务;
  • 产品形态:保留现有智能客服形态的基础之上,在现有问题工单流程上,新增一个【AI问答能力】。但底层的知识库,必须保持这二者是同一个库,避免重复构建;
  • 产品流程:由产品经理、测试等角色,基于现有客诉问题、日常咨询问题分模块逐步解决(前期聚焦问题占比最多的模块,如加班18.01%、假期18.26%),持续总结、抽象问题,并1-2周反复对AI进行“喂养”;
  • 时间周期:预计持续3-6个月

第二阶段:开始将重心转移至直接面向客户,同时提升智能客服的价值与调整产品设计辅助。

具体操作是:

  • 产品用户:同时面向客户(重要)与内部服务者
  • 产品价值:除了现有产品规则、逻辑与问题外,新增另一个维度的“养料”(即行业知识(包含法律法规)),提升智能客服对客户的价值;
  • 产品形态:保持AI稳定模式不变。但需将现在直接可以转【人工客服】的产品设计,改成必须先问问题,并回答后,如不满意才能转人工;
  • 产品流程:保持系统产品规则“喂养”的同时,新增行业维度的“养料”,并重点优化与客户聊天过程的关键片段,进行针对性的优化;
  • 产品周期:预计持续至少6个月

最后一个阶段:完全转型为面向所有人的智能客服产品,包含客户、客服、实施、销售、客户成功。

最终目标是:智能AI客服可以解答客户的50%以上的问题,降低客服30%工作量,同时降低产研客诉问题的60%以上。

03

案例2:用AI重做现有产品之有赞

有赞创始人白鸦在2024年产品发布会上,发布了最新的【智能运营系统】,其中分享背景时说:

他们共有7个系统,20000多个功能,菜单数已达上百个,如果按25人日/功能,3000元/人日,那过去11年他们对系统研发的投入将超过30亿。

可是,如此多的功能,如此多的菜单入口,实际用户使用的有多少?又有多少好用功能被埋没?

所以,他们2023年下半年开始全部All in AI,只要超过2个工作日的功能,一定要经过他的授权,否则不允许再开发,由他亲自下场带领团队用AI改造现有产品。

举个例子。

该例子来源于其产品发布会,感兴趣的同学,可前往【有赞说】视频号看直播(比我写的精彩多了,哈哈哈)

它的产品形态是智能助手式为主,并将现有产品功能进行碎片化拆分,与智能助手结合,形成一体化AI产品的解决方案。

这是本文的重点,笔者当时看到这种产品形态时,深受启发,感觉它可能就是目前用AI重做产品的最佳产品形态的切入点,而终局可能就是在此基础之上,新增更多模态的输入与输出。

原因有三:

  • 从产品定位来说,它就像当初的百度/谷歌一样,一个简单的超级入口,可面向所有客户,就像一个魔法师一样,既能解决客户的客诉问题,又可以解决业务操作问题。同时,从产品迭代方向看,后续只需继续叠加更多能力、场景即可;
  • 从用户/客户来说,可以形成“有问题,找助手”用户认知,而不用去记忆/翻找功能入口,也不用去记忆规则;
  • 从技术能力来说,目前自然语言能力下的AI,已经相对成熟。尤其是在限定场景之下。

它是一个从【数据】(销售额)到【建议与行动】(如发优惠券),再到【执行任务】(修改优惠券并自动发放),最后到【反馈数据】(如优惠券使用情况)的场景闭环。

从有赞产品首页,点击【智能小助手】即可进入(如下图):

你可输入“近几天销售额怎么样?”,AI自动生成一个销售额的趋势报表,还可直接点击查看【经营分析建议】

基于经营分析建议,你可直接采取行动:发放优惠券、提高首单转化率。(采取自然语言输入或点击均可实现目的)

当你选择【发放优惠券】时,则AI会生成一个优惠券的【待确认】任务,你可进行修改或发放。

当你确认时,可以通过自然语言输入即可(如可以,继续执行)

最后会有一个独立且清晰的界面,让你最终完成确认发放优惠券。同时,发放结束后,还可直接通过自然语言的方式,在AI界面实现优惠券使用情况,完成这个场景的闭环。

04

案例3:用AI重做现有产品之考勤

考勤是笔者负责的一款HR SaaS产品的其中一个子系统,该产品已迭代8年+,功能点200+(预估投入已超上亿元),功能之多,产品逻辑之复杂,不遑多让。

如何用AI重做一遍考勤系统呢?

智能客服相对是独立系统,不存在过多业务逻辑,所以重做时,产品形态、产品定位、产品路径均相对清晰,所以直接重做即可。

如果重做现有产品(它是一体化的完整产品,它是集合了所有业务的产品)时,则需思考以下问题:

  • 它与智能客服系统、现有产品的关联是什么?它是一个新系统吗?
  • 它要采取什么样的产品形态?
  • 它的产品定位是什么?
  • 它的产品路径如何设计与规划?
  • 选择什么样的切入点进行重做?

首先,它不是一个新系统。只是一种新交互方式,一个新的超级入口。否则我们就不叫用AI重做现有产品。

第二,产品形态。它的终局是一种基于多模态和自然语义交互的智能体(即专用的AI Agent)。但初始产品形态可以是【以单一模态(即文本)和自然语言为主,结合碎片化/场景化业务能力的智能体】,外在表现为一个【聊天】+【执行任务】的小助手。

所谓多模态:就像一维的直线、二维的平面、三维的立体一样,也是在多个维度进行升维。比如文本、语音、图片、视频、文件,甚至是肢体动作、微表情、触觉、味觉、嗅觉等多维能力的叠加;

所谓自然语义交互:就像与人沟通一样,可通过语言描述、语义分析、上下文情境、肢体动作、表情等的表达,让对方100%理解你的意图;

所谓智能体(AI Agent):它是基于普通AI与通用生成AI之间的一种AI,它主要是可以识别与分析任务、拆解任务、执行任务等,表现为一个“小助手”的角色。

 比如订机票/酒店的智能体,你可以像跟你的助理一样,跟它进行沟通,它可以识别你的自然语言信息,并与你反复沟通、确认,最终帮你实现订机票的任务。

或比如案例2所演示的过程,也是一个单一模态的智能体。

第三,产品定位。它不是新系统,那它的产品定位前期可以是现有系统的“助手”,目标是成为“接班人”

所以,对于用户而言,它与智能客服系统、其他子系统(如招聘、绩效、培训、薪资、社保等)是一个产品,也是同一个入口。

它与现有不同子系统的关系是共存与辅助关系,但不排除长远的将来,最终直接替代的可能性。

第四,产品路径。产品形态、产品定位确认的情况下,探索最佳产品路径时,则可【以终为始,全局思考;以始至终,最小闭环】和【小切口,大纵深】的方法论,全面梳理产品场景,确认关键场景后,选择最小闭环的切口进行切入,最终实现全局的大纵深。

具体流程是:

第一,从关键用户的视角,梳理完整用户旅程图。

此环节有两个关键点:

  • 明确你的产品的关键用户(如HRBP/店长/班组长等)与关键客户(如老板/HRD等),并确认你当前所想服务的角色;
  • 尽量换成用户视角去梳理与绘制。

第二,全面梳理与拆解场景,并确认关键场景与关键功能优先级。

基本逻辑是:横轴是【场景】,纵轴是【功能维度】。此处为方便,直接采用Excel表方式,但逻辑是一致的。

根据对关键角色的场景判断,可形成以下优先级:

P0:排班、调班、加班

P1:假期(限年假)、报表

P2:工作台、考勤确认、补贴、扣款、外出/出差

P3:假期(非年假)、打卡

一期可聚焦P0场景,按场景频次(越高频越优先)、通用性(越通用越好)、AI复杂度(越低成本实现越优先)、用户价值(越大越优先)四个维度,至少再分拆2-3层子场景/功能的优先级。

比如排班场景。

第一级可按流程进行子场景进行拆分,第二级再按子场景中的不同功能进行拆分(如下图)。

比如加班场景。将其进行二级拆分后的优先级(如下图)

第三,明确【最小闭环】的【小切口】,形成版本落地规划。

最后,根据客户反馈与上述场景,不断纵深,不断演化即可。

05

总结

第一,所有产品都值得用AI重做一遍(B端产品也不例外),但一定遵循【需求是1,方案是0】的方法论。

需求成立,方案才有价值。需求的核心是,定义清楚所需解决的问题;方案的核心是,定义清楚产品形态、产品定位与产品路径。

第二,可采取【以终为始,全面梳理;以始为终,最小闭环】和【小切口,大纵深】的方法论,进行AI产品的产品形态、产品定位与产品路径的定义;

第三,产品形态。B端产品应用AI的终极产品形态,一种基于多模态和自然语义交互的智能体(即专用的AI Agent)。但当前的最佳切入点是【以单一模态(即文本)和自然语言为主,结合碎片化/场景化业务能力的智能体】。外在表现为一个【聊天】+【执行任务】的小助手。

第四,产品定位。它不是新系统,却是一种新型入口,也是一个超级入口。采用新型交互方式,重新设计现有所有产品的入口。它与现有产品的关系,前期是“助手”,后期是“接班人”。

最后,AI应用的关键在于“养料”与时间周期,它是一个长期工程,别期望一蹴而就。前期它可能并不如你所预料的那么神奇,也不能解决你所面临的所有问题,但只要花足够的时间和耐心去储备足够的“养料”,也需花时间去与它一起进化,最终可能会形成一个新物种。

06

推荐学习

笔者是一个实践者,而不是创造者。所以本文所涉及的大多数想法以及方法论(意思还是有点原创的哈,哈哈哈),均不属于原创。

基于互联网的开放、共享理念,笔者也将相关原始出处分享给你。

1、关于“用AI重做B端产品的产品形态”的启发与案例,来自于有赞11周年的产品发布会,可在其视频号【有赞说】自行去看(重点是第5和第6集);

2、关于“AI助理”(即AI Agent)的应用案例,还可推荐前往【钉钉】学习其2024年的7.5版本发布会【我的超级助理】;

3、关于【小切口,大纵深】的产品方法论,来自于360创始人周鸿祎先生,他与罗胖、傅盛的对话中,都提到此方法论;

– 内容源1:可去【得到App】-【首页】-【直播】-【直播回放】中,查看【向红衣大炮“开炮”!所有人问周鸿祎】

– 内容源2:可去【混沌学园】搜索【傅盛】的【开年AI大课-企业私有化大模型来了】的【圆桌论坛】部分;

4、关于文中提到的AI相关的例子与概念等,则推荐阅读【AI 3.0】、【深度学习革命】,以及【第一财经(2024年第1期)】。

5、如果你愿意付费的话,那可前往【得到】订阅【AI学习圈】,跟着快刀青衣学AI,他通过广播、实践课程、公开课等方式,提供AI相关的学习服务(权当我给快刀打广告了,哈哈哈,虽然他压根都不认识我,也不给推广费)。

最后,鉴于以上内容都属于公开、带有商业性质,所以如果有相关不合时宜的宣传和不合规之处,请及时提出,笔者及时更改。

另,上述内容并不适合(或没办法)直接把对应链接附上,所以有找不到的情况,可留言沟通~

2024年7月4日至6日,2024世界人工智能大会(WAIC)暨人工智能全球治理高级别会议在上海召开,大会围绕“以共商促共享 以善治促善智”主题,打造“会议论坛、展览展示、评奖赛事、智能体验”四大板块,邀请了世界顶级科学家、企业家、投资人来沪,共商人工智能领域前沿技术、产业动向、向善治理。

7月5日,在“迈向 AGI:大模型焕新与产业赋能”论坛上,中国信通院华东分院、上海人工智能实验室及相关代表企业联合发布了《2024大模型典型示范应用案例集》,旨在展现具有先进性、引领性、示范性的典型案例,推动大模型产业生态持续繁荣发展。该案例集囊括目前国内最新最全的大模型应用实践案例,覆盖新能源、医疗、金融、法律、教育等全行业,集结大模型行业最有代表性产业应用案例优秀企业。苏州复能科技和上海淼链科技联合申报的《面向零碳能源的工商业储能系统》成功入选,网易、百度、钉钉、蚂蚁等98家企业入选。

上海淼链科技有限公司是一家致力于推进AI技术在各行业应用的高新技术企业,专注于为客户提供全面的数字化、智能化解决方案。公司汇聚了来自微软、Oracle、新加坡国立大学、复旦大学等顶尖企业和高校的专业人才。淼链科技结合不同行业的特定需求,集成了机器学习、自然语言处理、计算机视觉等AI技术,提供定制化的AI解决方案,涵盖教育、法律、能源、工业制造等多个领域,推动企业业务流程的智能化改造和企业效率的全面提升。